Những hằng đẳng thức đáng nhớ chắc không còn xa lạ gì với các bạn . Từ bây giờ Kiến vẫn nói kỹ hơn về 7 hằng đẳng thức quan trọng đặc biệt : bình phương của một tổng, bình phương của một hiệu, hiệu của hai bình phương, lập phương của một tổng, lập phương của một hiệu, tổng hai lập phương và cuối cùng là hiệu nhì lập phương. Các bạn cùng tham khảo nhé.
Bạn đang xem: 7 hằng đẳng thức đáng nhớ và hệ quả cùng các dạng toán
A. 7 hằng đẳng thức đáng nhớ
1. Bình phương của một tổng
Với A, B là những biểu thức tùy ý, ta có: ( A + B )2= A2+ 2AB + B2.
Ví dụ:
a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.Hướng dẫn:
a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32= a2+ 6a + 9.b) Ta bao gồm x2+ 4x + 4 = x2+ 2.x.2 + 22= ( x + 2 )2.
2. Bình phương của một hiệu
Với A, B là những biểu thức tùy ý, ta có: ( A - B )2= A2- 2AB + B2.
3. Hiệu hai bình phương
Với A, B là những biểu thức tùy ý, ta có: A2- B2= ( A - B )( A + B ).
4. Lập phương của một tổng
Với A, B là các biểu thức tùy ý, ta có: ( A + B )3= A3+ 3A2B + 3AB2+ B3.
5. Lập phương của một hiệu.
Với A, B là những biểu thức tùy ý, ta có: ( A - B )3= A3- 3A2B + 3AB2- B3.
Ví dụ :
a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3dưới dạng lập phương của một hiệu.Hướng dẫn:
a) Ta có: ( 2x - 1 )3= ( 2x )3- 3.( 2x )2.1 + 3( 2x ).12- 13
= 8x3- 12x2+ 6x - 1
b) Ta có : x3- 3x2y + 3xy2- y3= ( x )3- 3.x2.y + 3.x. Y2- y3
= ( x - y )3
6. Tổng nhị lập phương
Với A, B là các biểu thức tùy ý, ta có: A3+ B3= ( A + B )( A2- AB + B2).
Chú ý: Ta quy cầu A2- AB + B2là bình phương thiếu thốn của hiệu A - B.
Xem thêm: Những Game Chơi 2 Người Trên Pc Hay Và Đáng Chơi Nhất Hiện Nay
Ví dụ:
a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2- x + 1 ) bên dưới dạng tổng nhì lập phương.Hướng dẫn:
a) Ta có: 33+ 43= ( 3 + 4 )( 32- 3.4 + 42) = 7.13 = 91.b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13= x3+ 1.
7. Hiệu hai lập phương
Với A, B là những biểu thức tùy ý, ta có: A3- B3= ( A - B )( A2+ AB + B2).
Chú ý: Ta quy mong A2+ AB + B2là bình phương thiếu thốn của tổng A + B.
Ví dụ:
a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) dưới dạng hiệu nhì lập phươngHướng dẫn:
a) Ta có: 63- 43= ( 6 - 4 )( 62+ 6.4 + 42) = 2.76 = 152.b) Ta bao gồm : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3- ( 2y )3= x3- 8y3.B. Bài xích tập trường đoản cú luyện về hằng đẳng thức
Bài 1.Tìm x biết
a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.Hướng dẫn:
a) Áp dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3- b3.( a - b )( a + b ) = a2- b2.
Khi kia ta bao gồm ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
⇔ x3- 33+ x( 22- x2) = 0 ⇔ x3- 27 + x( 4 - x2) = 0
⇔ x3- x3+ 4x - 27 = 0
⇔ 4x - 27 = 0
Vậy x=

( a + b )3= a3+ 3a2b + 3ab2+ b3
( a - b )2= a2- 2ab + b2
Khi đó ta có: ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.
⇔ ( x3+ 3x2+ 3x + 1 ) - ( x3- 3x2+ 3x - 1 ) - 6( x2- 2x + 1 ) = - 10
⇔ 6x2+ 2 - 6x2+ 12x - 6 = - 10
⇔ 12x = - 6
Vậy x=

Bài 2:Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2
2x2+ 4xy B. – 8y2+ 4xy- 8y2 D. – 6y2+ 2xyHướng dẫn
Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2
A = x2– (2y)2–
A = x2– 4y2– x2+ 4xy - 4y22
A = -8y2+ 4xy
Hãy nhớ nó nhé
Những hằng đẳng thức đáng nhớ bên trên rất đặc trưng tủ kiến thức của chúng ta . Núm nên các bạn hãy phân tích và ghi nhớ nó nhé. đông đảo đẳng thức đó giúp họ xử lý các bài toán dễ dàng và cạnh tranh một phương pháp dễ dàng, các bạn nên làm đi làm lại để bản thân rất có thể vận dụng tốt hơn. Chúc chúng ta thành công và siêng năng trên tuyến đường học tập. Hẹn chúng ta ở những bài xích tiếp theo